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Abstract

Background

Dyspnoea is one of the emergency department’s (ED) most common and deadly chief com-

plaints, but frequently misdiagnosed and mistreated. We aimed to design a diagnostic deci-

sion support which classifies dyspnoeic ED visits into acute heart failure (AHF),

exacerbation of chronic obstructive pulmonary disease (eCOPD), pneumonia and “other

diagnoses” by using deep learning and complete, unselected data from an entire regional

health care system.

Methods

In this cross-sectional study, we included all dyspnoeic ED visits of patients� 18 years of

age at the two EDs in the region of Halland, Sweden, 07/01/2017–12/31/2019. Data from

the complete regional health care system within five years prior to the ED visit were ana-

lysed. Gold standard diagnoses were defined as the subsequent in-hospital or ED discharge

notes, and a subsample was manually reviewed by emergency medicine experts. A novel

deep learning model, the clinical attention-based recurrent encoder network (CareNet), was

developed. Cohort performance was compared to a simpler CatBoost model. A list of all var-

iables and their importance for diagnosis was created. For each unique patient visit, the

model selected the most important variables, analysed them and presented them to the
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clinician interpretably by taking event time and clinical context into account. AUROC, sensi-

tivity and specificity were compared.

Findings

The most prevalent diagnoses among the 10,315 dyspnoeic ED visits were AHF (15.5%),

eCOPD (14.0%) and pneumonia (13.3%). Median number of unique events, i.e., regis-

tered clinical data with time stamps, per ED visit was 1,095 (IQR 459–2,310). CareNet

median AUROC was 87.0%, substantially higher than the CatBoost model´s (81.4%).

CareNet median sensitivity for AHF, eCOPD, and pneumonia was 74.5%, 92.6%, and

54.1%, respectively, with a specificity set above 75.0, slightly inferior to that of the Cat-

Boost baseline model. The model assembled a list of 1,596 variables by importance for

diagnosis, on top were prior diagnoses of heart failure or COPD, daily smoking, atrial

fibrillation/flutter, life management difficulties and maternity care. Each patient visit

received their own unique attention plot, graphically displaying important clinical events

for the diagnosis.

Interpretation

We designed a novel interpretable deep learning model for diagnosis in emergency depart-

ment dyspnoea patients by analysing unselected data from a complete regional health care

system.

Introduction

Patients with dyspnoea have a higher short-term mortality than most other patients in the

emergency department (ED) [1–3], therefore, an early diagnosis and treatment is essential

[4–6]. The most prevalent diagnoses are acute heart failure (AHF), exacerbation of chronic

obstructive pulmonary disease (eCOPD) and pneumonia, making up approximately half of

dyspnoeic adults in emergency care [7]. These diagnoses are often mistaken for each other in

the ED [8].

Studies indicate that final ED diagnoses, after standard ED evaluation, are concordant with

the hospital discharge summary in 54–88% of AHF patients, 56–67% of eCOPD patients and

47–67% of pneumonia patients [9, 10]. Older dyspnoea patients receive correct treatment in

the ED in only 64%, 54% and 68% of the AHF, eCOPD and pneumonia cases, respectively

[10]. Inaccurate diagnostics have been correlated with higher mortality [5]. The diagnostic

accuracy of dyspnoea has not improved over the last decades, as acute coronary syndrome,

stroke/intracerebral bleeding and sepsis have; therefore, diagnostic decision support is

urgently required [11].

Several artificial intelligence (AI) models for emergency diagnostics have outperformed

standard care [12], but to our knowledge, there are no models diagnosing dyspnoea.

In this study, we aimed to create an AI diagnostic decision support for dyspnoeic adults at

time of ED triage. Our approach was to analyse comprehensive and unselected real-world

administrative and clinical data from an entire regional health care system in an open-ended

search for diagnostic predictors and to present the result to the clinician in an interpretable

way for each individual patient.
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Methods

Setting

Region Halland, a region in southwestern Sweden, hosted this research. The region´s two hos-

pital EDs serve 330,000 inhabitants annually with 46,000 and 42,000 ED visits, respectively.

The cohort

This population-based cross-sectional study included all adult (� 18 years of age) ED visits

with dyspnoea, i.e. the subjective experience of breathing discomfort, as the main complaint

within the region´s two EDs from July 1, 2017, to December 31, 2019 (Table 1). The five-level

Rapid Emergency Triage and Treatment System (RETTS) [13], Sweden’s most common triage

system, was used to define the complaint. Dyspnoea as a chief complaint accounted for 6.9% of

all adult ED visits. Patients referred to other levels of care immediately at triage, patients who

left without being seen by a doctor (LWBS) and residents of other Swedish regions and other

countries were excluded.

Ethical approval & reporting protocol

The study was approved by the Swedish Ethical Review Authority, no. 2021–02520. Informed

consent was waived and the participants were instead given an opt-out possibility in accor-

dance with the ethical approval. Information about the study and the opt-out possibility were

published at Lund University Population Research Platform (LUPOP) and on the web page of

Region Halland.

The study complies with the STROBE protocol.

Labels

Our four labels AHF, eCOPD, pneumonia and "other diagnoses" were defined according to

WHO diagnostic ICD-10 codes [14]. Heart failure was defined by ICD-10 codes I11.0, I13.0,

I13.2 or I50, eCOPD by ICD-10 code J44 and pneumonia by ICD-10 codes J10.0, J11.0 or

J12-J18. “Other diagnoses” was defined as all other ICD-10 codes. In in-hospital patients, the

principal diagnosis in the discharge statement represented the label, while in non-admitted

patients, the main ED discharge diagnosis made the label. A few patients had two registered

main diagnoses in their EHR, these both were then used as labels. Thus, more than one label

was allowed.

Table 1. Cohort selection.

Inclusion/exclusion criteria Change
(N)

Cohort size
(N)

Number of ED visits registered upon arrival 1st of July 2017–31st of December
2019

N/A 221,208

Number of ED visits after exclusion of patients< 18 years -47,529 173,679

Number of ED visits after exclusion of referrals from triage to other care givers and
exclusion of LWBSa

-16,577 157,102

Number of ED visits after exclusion of visits with other complaints than dyspnoeab -146,228 10,874

Number of ED visits after exclusion of residents in other Swedish regions and in
other countries at time of the visit

-559 10,315

Cohort selection starting with all regional ED visits.
aLWBS: patients who left on their own accord without being seen by a doctor.
bI.e. not assigned “dyspnoea” according to the RETTS triage system [13].

https://doi.org/10.1371/journal.pone.0311081.t001
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The nonspecific, symptom-based diagnosis “R06.0 dyspnoea” was common in patients dis-

charged home from the ED. An adjudicating committee of three experienced emergency phy-

sicians manually reviewed all these patient visits (n = 1,070) to identify eventual missed AHF,

eCOPD and pneumonia diagnoses by using all regional healthcare data up to 30 days after the

ED visit. Two experts reviewed each visit until reaching an agreement. Diagnostic inaccuracy

was then estimated as the number of missed diagnoses of AHF, eCOPD or pneumonia divided

by the total number of visits with AHF, eCOPD or pneumonia, respectively.

Diagnostic inaccuracy in the study cohort was estimated as 4.5%, 6.6% and 1.9% in patients

with AHF, eCOPD and pneumonia, respectively. After relabelling with the expert labels, 15.5%

of visits had AHF, 14.0% had eCOPD, 13.3% had pneumonia, and 58.1% had other diagnoses,

altogether slightly more than 100% due to multiple diagnoses. The label “other” represented,

in addition to symptom-related diagnoses, numerous other diagnoses, of which pulmonary

embolism, asthma and atrial fibrillation/flutter were the most common, but none was more

prevalent in the cohort than 3.4% (S1 Table).

Variables

For our deep learning model, all accessible, structured data produced in the patient´s trajec-

tory through various care providers and IT systems in the entire region were collected by

using the region´s comprehensive data analysis platform [15]. Data included electronic health

records (EHRs) and administrative data from all primary care, outpatient specialist care, inpa-

tient care, ambulance service and ED care. All private care within the region was also included

except for a few minor private clinics which declined participation. The variables covered for

example all diagnostic codes, procedure codes, prescribed and picked-up medications, vital

signs, blood tests and referrals (Table 2). Free text in the medical charts, electrocardiograms

(ECGs) and actual images were not accessed. To mirror the real-world setting, the data were

not specifically selected or modified for the task. Blood samples were classified as low, normal,

or high according to reference intervals. All data points were linked to patients and timestamps

and then defined as "events".

Descriptive statistics

Percentage was calculated for categorical and ordinal data, while continuous variables were

described by median and IQR by using SPSS version 29.0 [16].

Model design

We designed a clinical attention-based recurrent encoder network (CareNet) to accurately diag-

nose ED patients based on their triage variables and clinical history (Table 2). CareNet draws

inspiration from advancements in natural language processing (NLP) for document classifica-

tion tasks [17]. We adopted a similar approach to represent the patient’s health status at the

index time.

We began by equally segmenting a patient’s timeline intoM periods (Fig 1). Next, we

looked for clinical events in each period.

CareNet’s three-layer hierarchical structure is designed to mimic a clinician’s approach to

capture time and context awareness for each clinical event. Fig 2 illustrates the CareNet archi-

tecture. Each layer has two key components. The encoder has bidirectional gated recurrent

units (GRUs) [18]. It summarizes both directions of the input to incorporate neighbourhood

information into each input embedding. Since not all inputs contribute equally to the higher-

level representation, we have an attention block that performs a weighted aggregation of the

input embeddings by learning how much an input embedding should contribute to the
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Table 2. Clinical variables included.

Context Source Data

1 Primary care Complaints
Urgent/planned?
Type of encounter (e.g., physical or digital)
Care-provider category
Procedures
Primary and secondary diagnoses
Referrals

2 Outpatient specialist care Complaints
Urgent/planned?
Type of encounter (e.g., physical or digital)
Organization/clinic
Care-provider category
Procedures
Primary and secondary diagnoses
Referrals

3 Emergency department care Which hospital
Ambulance/walk in
Complaints
Triage priority
Care provider category
Medications
Procedures
Primary and secondary diagnoses
Hospital admittance or discharge
Referrals

4 Inpatient care Admitted from
Urgent/planned?
Organization/ward
Medications
Procedures
Primary and secondary diagnoses
Discharged to
Referrals

5 Ambulatory care Ambulance priority
Medications
Oxygen delivery
Free airway?
Semisitting position?
Continuous positive airway pressure (CPAP)?
Advance notice to ED?
Pain
Time: acknowledge of assignment, arrival to and departure from
pick-up place, completion of assignment

6 Others Ordinary medications, prescribed
Ordinary medications, picked-up
Number of picked up medication packages
Distribution of medication to patient
Blood samples and other laboratory tests
Radiology exams, type of
Smoking status

Self-derived and/or continuous
numeric variables

Age
Sex
Weight
Number of earlier encounters: primary care, outpatient specialist
care, ambulatory care, emergency department care, inpatient care
Vital signs measured in primary care, outpatient specialist care,
ambulatory care, ED care, in-hospital care:
• Level of consciousness
• Systolic and diastolic blood pressure
• Pulse
• Temperature
• Oxygen saturation
• Breathing frequency

(Continued)
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higher-level representation. In this text, the terms embeddings and representations are used

interchangeably to refer to numerical vectors representing individual clinical events, care con-

texts, or care time segments.

Given events in a specific care context and period, the event encoder converts these events

to numeric embeddings, gleaned via pretrained skip-gram initialization [19] and encodes the

other events (neighbourhood) information into each embedding. The event-level attention

block calculates the importance of each event embedding to generate the care context embed-

ding (Fig 2). The process is then repeated in the middle, context layer. The care context

encoder encodes the other context neighbourhood information into each context embedding.

The care context attention block then calculates how much each context contributes towards

the top, time-period, and layer and accordingly aggregates the context embeddings. Here, we

concatenate the output of the context attention block with self-derived or continuous numeric

variables (Table 2) to obtain the time-period representation. The final layer, the time-period

encoder, encodes all time information into each time-period embedding. This is followed by a

time-period level attention block that calculates how much different periods contribute to the

patient representation and aggregates the time-period embeddings accordingly. The output of

the time-period attention block is concatenated with onsite variables (Table 2) to obtain the

final patient visit representation. This final patient visit representation is then passed through a

feed-forwards neural network to obtain the diagnosis label distribution. Evidential loss is cal-

culated using labels. CareNet is trained in an end-to-end manner by minimizing the loss using

Table 2. (Continued)

Context Source Data

Onsite variables at index visit Time at ED registration (hour, day, week)
Which hospital
Ambulance/walk in
Number of concurrent ambulance assignments
ED occupancy
Triage priority
Vital signs:
• Level of consciousness
• Systolic and diastolic blood pressure
• Pulse
• Temperature
• Oxygen saturation
• Breathing frequency

Included clinical variables and their different contexts and sources.

https://doi.org/10.1371/journal.pone.0311081.t002

Fig 1. An ED patient visit. A single ED patient visit in the health care system. The medical past is divided into periods
and clinical contexts.

https://doi.org/10.1371/journal.pone.0311081.g001
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Fig 2. Hierarchical attention network of a patent visit. The hierarchical attention network of CareNet analysing a
patient visit. Circles represent vectors.

https://doi.org/10.1371/journal.pone.0311081.g002
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backpropagation. A detailed description of patient visit representation learning and the train-

ing process has been added to the supplement (see S1 Text).

Experiments and evaluation

Multiple experiments were conducted, including adjustment of the observation window from

five to one year and using both raw and expert-derived labels. For all the experiments, we con-

ducted 10-fold cross-validation and, within each fold, performed 10 bootstrapped evaluations

using 90% of the evaluation set. This approach resulted in a final 10x10 matrix of area under

the receiver operating characteristic curve (AUROC) values, providing a comprehensive per-

formance assessment that reflects both cross-validation and bootstrapping techniques. We

reported the median micro AUROC (2.5–97.5 percentile) on the evaluation fold, i.e., each

patient visit was given the same weight. The multilabel model design enabled a probability

between 0 and 1 for each label (diagnose), i.e., the sum of the label probabilities might be more

than 100%.

We analysed attention behaviours over the cohort to explore an average pattern and how

clinical events in the different contexts contribute to the classification. Since there are no com-

monly implemented diagnostic scores for dyspnoeic ED patients, we created a baseline model

for comparison. We built a tree-based CatBoost model [20] using expert-derived clinical fea-

tures based on literature studies [21–24] and clinical reasoning among the researchers. The

nine variables were age, sex, a diagnosis of heart failure, COPD or pneumonia registered any-

where in the regional health care system within five years prior to index visit, a diagnosis of

AHF, eCOPD or pneumonia registered at one of the regional EDs within one year prior to

index visit and temperature, measured in index visit triage. The labels were defined with the

same ICD-10 codes as the CareNet model.

For the CatBoost model, we leveraged the MissForest algorithm that iteratively builds ran-

dom forest models to impute missing instances of input features [25]. The CatBoost variables

had no missing data, besides temperature with 2.1% missing values. For CareNet, we fed raw

data with "NA" markers for missing instances, allowing the model to autonomously deduce

missing values as part of its training.

AUROC sensitivity and specificity for each label were reported as medians (2.5–97.5 per-

centile), calculated by using 10x10 matrices of AUROC values after cross-validation and boot-

strapping techniques. Sensitivity and specificity were defined as maximum sensitivity with a

specificity above 75.0% and its corresponding specificity.

We analysed CareNet attention behaviours to explore how clinical events contribute to the

classification. To estimate the diagnostic importance for each type of event for the whole

cohort, we multiplied each patient visit´s event weight by the weight of the event´s context and

the weight of the event´s period. Weights of the same type of events from different patients

were added to make a list of diagnostic variables in order of diagnostic ability.

Results

Descriptive statistics

Among the 10,315 visits, the number of unique patients was 6,967. In the expert-labelled

cohort, 15.5% of visits had AHF, 14.0% had eCOPD and 13.3% had pneumonia. 97 patient vis-

its (0.9% of the cohort) had two of AHF, eCOPD or pneumonia as main diagnosis, and thus

two labels. The median number of unique prior events per ED visit was 1,095 (interquartile

range, IQR 459–2,310) with five years of data and 352 events (IQR 134–838) with one year of

data. The median age among the visits was 75 years (IQR 62–84), and women constituted

slightly more than half of the cohort (Table 3).
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Diagnostic performance

CareNet´s performance, measured by median micro AUROC (2.5–97.5 percentile) was 87.0%

(84.8–88.3%), by using one year of data and expert labels (Table 4).

CareNet performed substantially better than the CatBoost baseline model, which had a

median performance of 81.4% (77.5–86.6%) (Table 4). Feeding the CareNet model with five

years of data, compared to one year of data, did not improve performance. We also compared

performance with and without expert labels, and the performance remained the same (Table 4).

Table 3. Cohort characteristics.

All cohort AHFa eCOPDb Pneumoniac Other diagnosesd

Visits, N (%) 10,315 (100.0) 1,596 (15.5) 1,445 (14.0) 1,376 (13.3) 5,995 (58.1)

Unique patients, N 6,967 1,202 768 1,219 4,794

Age,median (IQR) 75 (62–84) 83 (77–89) 76 (69–82) 77 (66–86) 71 (53–81)

Sex, N (%)

Male 4,928 (47.8) 860 (53.9) 632 (43.7) 676 (49.1) 2,804 (46.8)

Female 5,387 (52.2) 736 (46.1) 813 (56.3) 700 (50.9) 3,191 (53.2)

Medical history

Charlson Comorbidity Index,median (IQR) 1.0 (0.0–2.0) 2.0 (0.0–3.0) 1.0 (1.0–2.0) 0.0 (0.0–2.0) 0.0 (0.0–2.0)

Heart failure diagnosis, previous yeare, N (%) 2,298 (22.3) 870 (54.5) 410 (28.4) 234 (17.0) 815 (13.6)

COPD diagnosis, previous yeare, N (%) 2,322 (22.5) 260 (16.3) 1,181 (81.7) 286 (20.8) 655 (10.9)

Pneumonia diagnosis, previous monthe, N (%) 425 (4.1) 35 (2.2) 47 (3.3) 151 (11.0) 197 (3.3)

No. of primary care encounters previous yearf,median (IQR) 11.0 (5.0–22.0) 17.0 (9.0–29.0) 13.0 (6.0–24.0) 10.0 (5.0–19.8) 10.0 (4.0–20.0)

No. of outpatient specialist encounters previous yearf,median (IQR) 3.0 (0.0–9.0) 4.0 (1.0–10.0) 3.0 (1.0–9.0) 2.0 (0.0–8.0) 3.0 (0.0–8.0)

No. of emergency department visits previous year,median (IQR) 1.0 (0.0–3.0) 1.0 (0.0–3.0) 2.0 (0.0–4.0) 1.0 (0.0–2.0) 1.0 (0.0–2.0)

No. of in-hospital visits last year,median (IQR) 1.0 (0.0–2.0) 1.0 (0.0–3.0) 1.0 (0.0–3.0) 1.0 (0.0–2.0) 0.0 (0.0–2.0)

Index visit

Hospital N (%)g

Hospital 1 5,405 (52.4) 906 (56.8) 804 (55.6) 633 (46.2) 3,114 (52.1)

Hospital 2 4,887 (47.4) 689 (43.2) 639 (44.2) 738 (53.8) 2,865 (47.9)

Arrival time to emergency department N (%)

Monday-Friday, 8:00 am-8:59 pm 6,278 (60.9) 1,068 (66.9) 810 (56.1) 806 (58.6) 3,667 (61.2)

Saturday-Sunday, 8:00 am-8:59 pm 1,934 (18.7) 298 (18.7) 275 (19.0) 282 (20.5) 1,095 (18.3)

Nighttime, 9:00 pm-7:59 am 2,103 (20.4) 230 (14.4) 360 (24.9) 288 (20.9) 1,233 (20.6)

Ambulance arrival, n (%) 5,123 (49.7) 890 (55.8) 1,010 (69.9) 830 (60.3) 2,445 (40.8)

Triage priority, n (%)

Priority 1 596 (5.8) 99 (6.2) 104 (7.2) 139 (10.1) 263 (4.4)

Priority 2 5,028 (48.7) 902 (56.5) 937 (64.8) 801 (58.2) 2,458 (41.0)

Priority 3 3,960 (38.4) 578 (36.2) 385 (26.6) 398 (28.9) 2,617 (43.7)

Priority 4 677 (6.6) 14 (0.9) 16 (1.1) 36 (2.6) 611 (10.2)

Priority 5 54 (0.5) 3 (0.2) 3 (0.2) 2 (0.1) 46 (0.8)

Cohort characteristics of visits labelled AHF, eCOPD, pneumonia and “other diagnoses”, considering the adjudicating committee´s result.
aHeart failure: ICD-10 code I11.0, I13.0, I13.2 or I50.
bChronic obstructive pulmonary disease (COPD): ICD-10 code J44.
cPneumonia: ICD-10 code J10.0, J11.0 or J12-J18.
dOther diagnoses: all other ICD-10 codes.
eRegistered anywhere in the regional health care system.
fEncounters included visits, digital meetings and phone calls.
gMissing value in all cohort: n = 23 (0.2%).

https://doi.org/10.1371/journal.pone.0311081.t003
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CareNet AUROC was considerably higher for patients� 75 years compared to older

patients (91.5% versus 81.2%) and for patients without all three diagnoses of heart failure,

COPD and pneumonia recorded in their medical history in the previous year compared to

patients with all three diagnoses registered (88.0% versus 69.0%) (S2 Table).

CareNet AUROC for each diagnosis is shown in an illustrative example from one of the val-

idation folds (Fig 3).

Table 4. Diagnostic performance.

Model Median micro AUROC (%, 2.5–97.5
percentile)

CareNet: With one year of data, with expert labels 87.0 (84.8–88.3)

CareNet: With five years of data, with expert labels 86.9 (82.2–88.6)

CareNet: With one year of data, without expert labels 87.0 (85.0–88.8)

CatBoost: With five years of data, without expert labels
(baseline)

81.4 (77.5–86.6)

Diagnostic performance for the CareNet model using one versus five years of data prior to index visit and with and

without expert labels compared to the baseline CatBoost model.

https://doi.org/10.1371/journal.pone.0311081.t004

Fig 3. CareNet performance across different diagnostic labels. CareNet AUROC using one year of data prior to
index visit and expert labels. An illustrative example from one of the validation folds with the highest micro AUROC.

https://doi.org/10.1371/journal.pone.0311081.g003
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CareNet median sensitivity for AHF, eCOPD, pneumonia and the “other” label was 74.5%,

92.6%, 54.1% and 64.2%, respectively, with a specificity set above 75.0% (Table 5). This result

was overall slightly inferior to that of the CatBoost baseline model; AHF 71.3%, eCOPD 93.0%,

pneumonia 59.3% and “other” diagnoses 67.3% with a specificity set above 75.0% (Table 5).

Variable weight

In the CareNet design, the weights of all patients´ clinical events, multiplied by the importance

of their clinical context and time period, were added to a list of a total of 1,596 variables in

order of diagnostic ability over the whole cohort. The top 30 of those are shown in Table 6.

The model gave most attention to prior diagnoses of heart failure or COPD, followed by daily

smoking, atrial fibrillation/flutter, life management difficulties and maternity care.

Interpretable diagnostics

Each individual patient visit received their own unique attention plot based on individually

selected variables (see examples in Fig 4A, 4B). Seen on top in each figure, starting from index

time, each prior five-week period is weighted according to its diagnostic importance. The most

important period displays its six clinical contexts down to the left. The most important clinical

context shows its most substantial clinical events down to the right.

Discussion

In this population-wide cross-sectional study we designed an AI-based diagnostic support for

dyspnoea at the time of ED triage by analysing unselected real-world data from a complete

regional health care system. A novel deep learning model, CareNet, was designed, which

achieved a median AUROC of 87.0% in discriminating patients with AHF, eCOPD, pneumo-

nia and other conditions already in the very beginning of the ED visit, before any blood tests,

imaging or physician assessment is being performed. 1,596 variables were also ranked by their

diagnostic abilities, for further exploration.

We exposed a broad, unselected dataset to a complex deep learning model to open-endedly

explore if there are predictors that the medical field has not assessed before. This is important

since today´s diagnosis of dyspnoea in emergency care is surprisingly erroneous [8, 11, 26],

with one-third, up to almost half, of admitted elderly patients receiving improper treatment

for their diagnoses of AHF, eCOPD or pneumonia in the ED [10]. An other reason was to

enable individualized medicine in which the variables are not defined beforehand but rather

selected by the model for each individual patient.

The CareNet AUROC was considerably higher for younger patients and substantially lower

for patients with all three previous diagnoses of heart failure, COPD and pneumonia (S2

Table). This seems compatible with a study performed on diagnostic performance in

Table 5. CareNet sensitivity and specificity.

AHF eCOPD, Pneumonia Other

CareNet Median sensitivity (%, 2.5–97.5 percentile) 74.5 (65.0–82.0) 92.6 (84.5–97.7) 54.1 (39.9–70.9) 64.2 (55.3–72.6)

Median specificity (%, 2.5–97.5 percentile) 75.5 (75.0–76.6) 75.3 (75.0–76.0) 75.8 (75.0–77.4) 77.4 (75.1–83.6)

CatBoost baseline model Median sensitivity (%, 2.5–97.5 percentile) 71.3 (59.8–81.7) 93.0 (85.1–98.5) 59.3 (43.5–71.2) 67.3 (58.6–72.1)

Median specificity (%, 2.5–97.5 percentile) 78.4 (75.2–83.5) 81.6 (78.5–85.8) 78.1 (75.2–83.4) 76.6 (75.0–80.3)

CareNet sensitivity and specificity compared to the CatBoost model.

https://doi.org/10.1371/journal.pone.0311081.t005
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emergency care at hospitals in the United States [10]. However, the difference in performance

between women and men was small (S2 Table).

When the model was fed five years of data instead of one year of data, the performance

remained the same (Table 4). The algorithm might have obtained too wide data when includ-

ing five years, related to the sample size, or perhaps much of the information, for example

diagnoses, was repeated in the older data. A third explanation might be that the model priori-

tizes the most recent time periods in the model.

CareNet micro AUROC performance was considerably higher (87.0%) than that of our Cat-

Boost model (81.4%). We prefer to use micro-averaging rather than macro-average since the

classes are unbalanced, however micro-averaging needs the individual models to be calibrated.

The CatBoost models for each class may be less calibrated compared to the single CareNet

model, explaining the lower average micro AUROC value for the CatBoost model. When com-

paring sensitivity at specificity higher than 75.0%, the CatBoost model appeared slightly better

overall (Table 5). A disadvantage for the deep learning model might be that there were rather

Table 6. CareNet top 30 ranked variables.

Variable

1 Heart failure, primary diagnosis

2 Chronic obstructive pulmonary disease (COPD), primary diagnosis

3 Chronic obstructive pulmonary disease (COPD), secondary diagnosis

4 Daily smoking

5 Atrial fibrillation/flutter, ED complaint

6 Life management difficulties, primary diagnosis

7 Appointment for health talk, maternal health services

8 Bladder cancer, specialist care complaint

9 ICD (implantable cardioverter defibrillator), specialist care complaint

10 Contact lens, primary care complaint

11 First appointment, maternal health services

12 Medication against obstructive airways, collected recipe

13 Head trauma, ED complaint

14 Examination and observation for other specified reasons, primary diagnosis

15 Chronic obstructive pulmonary disease (COPD), primary care complaint

16 Investigation, primary care complaint

17 Nose bleeding, ED complaint

18 Prostate, specialist care complaint

19 Endocrine, specialist care complaint

20 Diabetes, specialist care complaint

21 Kidney failure, primary diagnosis

22 Wound, primary care complaint

23 Other pulmonary heart diseases, primary diagnosis

24 Cataract, specialist care complaint

25 Other bacterial intestinal infections, primary diagnosis

26 Hernia, complaint specialist care

27 Endocrinological clinic, organizational code

28 Evaluation of need or function, measurement code

29 Neurological deficit, ED complaint

30 Pneumonia, organism unspecified, primary diagnosis

CareNet top 30 ranked variables by using data up to one year prior to index visit as well as expert labels.

https://doi.org/10.1371/journal.pone.0311081.t006
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few, strong predictors in the prediction task which do not reward a complex model or that

CareNet´s large dataset held too much noise.

The CareNet performance might be compared with a German study where emergency

medicine-trained anaesthesiologists in the ambulance diagnosed the patients immediately

after initial triage [8]. Although the cohort was slightly different than ours, the diagnostic accu-

racies for AHF, eCOPD and pneumonia were 77.4%, 82.6% and 49.3%, respectively. These

results suggest that it is easiest to diagnose eCOPD and hardest to diagnose pneumonia, which

is similar to the CareNet performance (Table 5).

For an open-ended search of predictors, we presented an AI-generated list of 1,596 unse-

lected variables by order of diagnostic ability, to enable further testing and evaluation in a sim-

pler model. In the list, the highest weighted variables seem medically reasonable: prior

diagnoses of heart failure and COPD diagnosis, daily smoking, atrial fibrillation/flutter, life dif-

ficulties and maternal care (Table 6).

An important aim of our model was interpretability. Generally, interpretability refers to the

extent of a human’s ability to understand and reason about a model [27], a field which is

believed to be important but underexplored [28]. Therefore, CareNet analyses and presents

clinical events placed in time and clinical context for each patient, as we believe clinicians intu-

itively do, e.g., a blood test taken a month ago at an earlier ED visit. (Fig 4A, 4B). In an imag-

ined future, all graphic bars might be “clickable,” displaying the individual patient´s unique

underlying diagnostic factors to the clinician.

Strengths and limitations

As a strength, this research was based on a complete regional population and entire regional

health care system data, including all regional emergency care.

Fig 4. A-B. Individual patient attention plots with diagnosis AHF and pneumonia. 4A. Attention plot for a patient with AHF. The period 16–20 weeks
prior to the index visit has the highest attention, i.e., is most important for diagnosis (diagram on top). During this most important period, the “others”
category (diagram down to the left) is most important for diagnosis. The “others” variables are described in Table 2. Among the “others” variables,
attention is highest for collected and, after that, prescribed medication of “R03 drugs for obstructive airway diseases” (diagram down to the right). 4B.
Attention plot for a patient with pneumonia. The period 0–5 weeks prior to the index visit has the highest attention, i.e., is most important for diagnosis
(diagram on top). During this most important period, the “others” category (diagram down to the left) is most important for diagnosis. The “others”
variables are described in Table 2. Among the “others” variables, attention is highest for “stopped smoking> 6 months ago” and “collected medication
R05 cough and cold preparations” (diagram down to the right).

https://doi.org/10.1371/journal.pone.0311081.g004
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We used all accessible regional health care system data, without further selection or modifi-

cation, which reduces selection bias. It also makes the model more generic for other research

questions. Additionally, real-world data mimic the actual clinical situation. As a limitation,

our data only included structured data and not free text, images, or ECGs. Also, the model

does not compensate for bias in care consumption or variability in clinician behaviour.

A strength of this study is that we included both admitted and discharged ED patients.

Many studies include only admitted patients, even though the disposition decision is made

later. The reason is inaccuracy of diagnostic outcome labels in EHR data, a well-known limita-

tion especially in patients discharged from the ED to home, when you cannot rely on an in-

hospital discharge summary, often summarizing several days of further testing and evaluation

[29]. To overcome this, experienced emergency physicians manually reviewed more than one

thousand patient visits. We believe the magnitude of the diagnostic inaccuracy was acceptable

for our research question, and the performance did not differ when comparing data with and

without expert labels (Table 4). Nevertheless, diagnostic uncertainty must be considered and

controlled in future studies and implementations.

Future implications

Short-term, AI might be focused on methodological development rather than implementation,

suggested by researchers [30]. Future studies could further explore our AI-derived list of 1,596

weighted variables. A suggestion would be to carefully select variables only from the upper

part of the list, and test them in a smaller, suitable model, aiming for high performance.

Images, ECGs and unstructured data might be added to the CareNet model, which allows

multi-modal analyses, to evaluate the effect on performance.

Only the main diagnosis registered in the EHR has been used as label in this study. This

reflects the most important diagnosis to identify and treat during the ED visit. A following

study might also include secondary diagnoses in the EHR, to mirror possible additional condi-

tions which might worsen the main diagnosis, and maybe also need treatment.

In a future study, the model could be trained and validated in a primary care setting, using

index visit variables originating from primary care rather than emergency care. This would

enable the provision of diagnostic support to primary care physicians as well.

According to earlier research [31], a complex model might be more robust among specific

patient subgroups. We may compare performance of our model with corresponding baseline

performance in selected patient subgroups.

Conclusion

We developed an AI tool for diagnosing dyspnoeic adults at the time of triage in the ED by

analysing comprehensive data from an entire regional healthcare system. The AI is interpret-

able for clinicians, as it contextualises data within its clinical setting and timeframe. Today, we

generate new, machine-derived insights into previously unknown but significant diagnostic

predictors. Looking ahead, we foresee a future of more individualised medicine.
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25. Stekhoven DJ, Bühlmann P. MissForest—non-parametric missing value imputation for mixed-type
data. Bioinformatics. 2011; 28(1):112–8. https://doi.org/10.1093/bioinformatics/btr597 PMID: 22039212

26. Hunold KM, Caterino JM, Bischof JJ. Diagnostic Uncertainty in Dyspneic Patients with Cancer in the
Emergency Department. West J Emerg Med. 2021; 22(2):170–6. https://doi.org/10.5811/westjem.
2020.10.48091 PMID: 33856297

27. Fan FL, Xiong J, Li M, Wang G. On Interpretability of Artificial Neural Networks: A Survey. IEEE Trans-
actions on Radiation and PlasmaMedical Sciences. 2021; 5(6):741–60. https://doi.org/10.1109/trpms.
2021.3066428 PMID: 35573928

28. Tjoa E, Guan C. A survey on explainable artificial intelligence (xai): Toward medical xai. IEEE transac-
tions on neural networks and learning systems. 2020; 32(11):4793–813.

29. Newman-Toker DE, Peterson SM, Badihian S, Hassoon A, Nassery N, Parizadeh D, et al. Diagnostic
errors in the emergency department: a systematic review. 2022.

PLOS ONE AI for diagnostics of dyspnoea in the emergency department

PLOSONE | https://doi.org/10.1371/journal.pone.0311081 December 27, 2024 16 / 17

https://doi.org/10.1371/journal.pone.0271982
https://doi.org/10.1371/journal.pone.0271982
http://www.ncbi.nlm.nih.gov/pubmed/35921383
http://www.ncbi.nlm.nih.gov/pubmed/35088701
https://doi.org/10.1111/acem.13553
http://www.ncbi.nlm.nih.gov/pubmed/30112782
https://doi.org/10.1186/s13049-019-0617-3
http://www.ncbi.nlm.nih.gov/pubmed/30940205
https://doi.org/10.1111/acem.14190
http://www.ncbi.nlm.nih.gov/pubmed/33277724
https://doi.org/10.1016/j.cardfail.2017.08.458
http://www.ncbi.nlm.nih.gov/pubmed/28887109
https://doi.org/10.5811/westjem.2019.9.43732
https://doi.org/10.5811/westjem.2019.9.43732
http://www.ncbi.nlm.nih.gov/pubmed/31738714
https://doi.org/10.1371/journal.pone.0188532
http://www.ncbi.nlm.nih.gov/pubmed/29166411
https://doi.org/10.1016/j.jemermed.2017.05.035
http://www.ncbi.nlm.nih.gov/pubmed/28941558
https://doi.org/10.1093/bioinformatics/btr597
http://www.ncbi.nlm.nih.gov/pubmed/22039212
https://doi.org/10.5811/westjem.2020.10.48091
https://doi.org/10.5811/westjem.2020.10.48091
http://www.ncbi.nlm.nih.gov/pubmed/33856297
https://doi.org/10.1109/trpms.2021.3066428
https://doi.org/10.1109/trpms.2021.3066428
http://www.ncbi.nlm.nih.gov/pubmed/35573928
https://doi.org/10.1371/journal.pone.0311081


30. Ghassemi M, Oakden-Rayner L, Beam AL. The false hope of current approaches to explainable artifi-
cial intelligence in health care. Lancet Digit Health. 2021; 3(11):e745–e50. https://doi.org/10.1016/
S2589-7500(21)00208-9 PMID: 34711379

31. Holmgren G, Andersson P, Jakobsson A, Frigyesi A. Artificial neural networks improve and simplify
intensive care mortality prognostication: a national cohort study of 217,289 first-time intensive care unit
admissions. Journal of intensive care. 2019; 7(1):44.

PLOS ONE AI for diagnostics of dyspnoea in the emergency department

PLOSONE | https://doi.org/10.1371/journal.pone.0311081 December 27, 2024 17 / 17

https://doi.org/10.1016/S2589-7500%2821%2900208-9
https://doi.org/10.1016/S2589-7500%2821%2900208-9
http://www.ncbi.nlm.nih.gov/pubmed/34711379
https://doi.org/10.1371/journal.pone.0311081

