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A B S T R A C T

Objective: Half of all adult emergency department (ED) visits with a complaint of dyspnea involve acute heart 
failure (AHF), exacerbation of chronic obstructive pulmonary disease (eCOPD), or pneumonia, which are often 
misdiagnosed. We aimed to create an arti�cial intelligence (AI) diagnostic decision support tool to detect patients 
with AHF, eCOPD, and pneumonia among dyspneic adults at the beginning of their ED visit.
Methods: In this cross-sectional study, we included all ED visits of patients 18 years or older with dyspnea at two 
regional Swedish EDs 07/01/2017–12/31/2019. In-hospital or ED discharge notes were used as outcome labels, 
with a subset manually reviewed by experts. We analyzed data from a complete regional healthcare system, 
along with socioeconomic factors, using Hierarchical Attention Networks. Each patient displayed a unique set of 
variables important for diagnosing dyspnea. All patients’ unique variable sets were aggregated into a variable 
list. The top 100, 50, and 20 variables were tested in a simpler CatBoost model. Finally, performance was 
compared after adding medical expertise to the AI model.
Results: We included 10,869 visits, with 15.1% having AHF, 13.6% eCOPD, and 13.1% pneumonia. The median 
number of variables per unique ED visit was 187 (IQR 111–307). Aggregating the unique sets of variables 
resulted in a cohort list of 2,064 variables. The median micro AUROC was 87.8% (2.5–97.5 percentile; 
86.4–89.3%). Age, ECGs, previous diagnoses, and medication were considered important by the AI model, while 
sex, vital signs, and socioeconomic factors were deemed almost non-predictive. Using the top 20 AI-selected 
variables, the AUROC was 86.6% (85.1–88.1%). Adding human medical expertise did not signi�cantly change 
the AUROC.

Glossary: AHF, Acute Heart Failure; CDSS, Clinical Decision Support Systems; COPD, Chronic Obstructive Pulmonary Disease; ECG, Electrocardiogram; eCOPD, 
Exacerbation of Chronic Obstructive Pulmonary Disease; ED, Emergency Department; EHR, Electronic Health Record; GRU, Gated Recurrent Units; HAN, Hierar
chical Attention Network; NLP, Natural Language Processing; RETTS, Rapid Emergency Triage and Treatment System.
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Conclusion: Based on the analysis of a high-dimensional dataset, we designed a lightweight 20-variable machine 
learning model that can early and effectively diagnose AHF, eCOPD, and pneumonia among ED patients with 
dyspnea.

1. Introduction

Dyspnea, a sensation of breathing dif�culty, is a time-critical and 
high-mortality complaint in the emergency department (ED) [1–3]. 
Early treatment increases the likelihood of ED discharge to home, 
shortens ED and in-hospital stays, and reduces readmission and mor
tality [4–8], while erroneous treatment may increase morbidity and 
mortality [9–12].

About half of adult ED visits for dyspnea are due to acute heart 
failure (AHF), exacerbation of chronic obstructive pulmonary disease 
(eCOPD), or pneumonia, [13,14] conditions that are challenging to 
differentiate due to overlapping symptoms, risk factors, and triggers 
[15–18].

At ED discharge, after physical examination, blood tests, and other 
assessments, the ED discharge diagnosis is concordant with the subse
quent in-hospital discharge diagnosis in only 50–70 % of AHF, eCOPD, 
and pneumonia cases [19–23]. Older dyspneic patients receive erro
neous ED treatment in 36 %, 46 %, and 32 % of cases of AHF, eCOPD, 
and pneumonia, respectively [20].

To our knowledge, no published research—whether machine learning- 
based or otherwise—has aimed to simultaneously identify AHF, eCOPD, 
and pneumonia in dyspneic patients using text-based analysis. Previous 
machine learning studies in dyspneic ED patients have primarily focused on 
individual diagnoses:

For AHF, one study used L1-Regularized Logistic Regression on 31 expert- 
selected variables and unstructured text, achieving an area under the receiver 
operating characteristic curve (AUROC) of 99 %. Key predictors included the 
words “diuresis,” “BNP,” and “CHF” from text, alongside NT-proBNP lab 
results and inpatient diuretic use [24]. Another study developed a hybrid AI- 
based clinical decision support system (CDSS) combining expert-designed 
decision trees and machine learning. The most predictive variables—three 
cardiac measurements—were extracted from ultrasonic heart exam free text 
reports. The CDSS performed comparably to cardiologists and outperformed 
non-cardiologists [25].

For COPD, Gradient Boosting models predicted exacerbation risk with an 
AUROC of 83 %. SHAP values identi:ed COPD Assessment Test scores and 
wheezing as top predictors among 34 expert-selected variables [26]. Another 
study found that Gradient-Boosted Decision Trees and Logistic Regression 
outperformed pulmonologists, prioritizing different features among 31 vari
ables. Key predictors included age, body mass index, and height in one model, 
versus blood oxygen saturation, cough, and sputum in another [27].

Few machine learning studies have focused on pneumonia, with most 
analyzing X-rays [28] or ultrasound [29] rather than clinical text. Early 
neural networks used 30–38 expert-selected textual features but lacked 
feature importance analysis [30,31].

We aimed to develop an AI-based decision support tool to identify 
AHF, eCOPD, and pneumonia in dyspneic adults early in the ED visit. 
The AI would autonomously screen comprehensive, unselected regional 
healthcare data, enabling the creation of simpli�ed diagnostic models 
with and without medical expertise.

2. Material and methods

2.1. Setting

This population-based cross-sectional study was conducted in Hal
land, a southwestern Swedish region with 330,000 inhabitants. Its two 
EDs receive 46,000 and 42,000 visits annually.

We included all ED visits from patients > 17 years with chief 
complaint dyspnea from July 1, 2017, to December 31, 2019 (Table 1). 

The �ve-level Rapid Emergency Triage and Treatment System (RETTS) 
[32] de�ned the complaint.

2.2. Diagnostic labels

Diagnostic labels were de�ned using World Health Organization 
(WHO) ICD codes, [33] based on primary diagnoses from ED or in- 
hospital discharge summaries. More than one label was allowed. A 
medical expert committee reviewed over 1,000 diagnoses in a prior 
study, �nding diagnostic accuracy acceptable [34]. These expert labels 
were used in this study. See Appendix for details (Text A.1.).

2.3. Variables

All accessible data were used in an open-ended search for diagnostic 
variables. These variables, such as diagnoses, are not isolated but linked to 
contextual (e.g., care setting) and temporal (i.e., number of weeks before the 
index visit) information, creating a high-dimensional latent space. For 
example, a heart failure diagnosis in primary care two weeks ago differs from 
one in emergency care ten weeks ago. Patient data (ED care, ambulance 
service, inpatient care, outpatient specialist care, and primary care) 
within one year before the ED visit were compiled using the region’s 
data analysis platform, [35] covering diagnoses, procedures, medica
tions, blood tests, vitals, and electrocardiograms (ECGs) (Table 2). So
cioeconomic factors and redeemed prescription drugs data were added 
from Statistics Sweden and the National Prescribed Drug Register by The 
National Board of Health and Welfare, respectively. Images and free text 
were excluded.

Data were prepared mainly by a rule-based approach. Categorical 
and ordinal values were treated as categorical. Continuous socioeco
nomic values were categorized by the 10, 25, 75, and 90 cohort per
centiles, vital signs manually based on cohort distribution, and lab tests 
as normal, high, or low per reference values. Age was grouped in 5-year 
intervals. ECGs were included as 125 binary features per the manufac
turer’s algorithm [36]. All values were treated as unordered categorical 
“words;” those occurring less than 50 times in the complete dataset were 
excluded. Remaining words were timestamped.

2.4. Model design

We divided the year before the ED visit into ten equal time periods 
and ten clinical contexts: ambulatory care, ED care, in-hospital care, 
outpatient specialist care, primary care, human-derived factors, other 
factors, ECGs, socioeconomic factors, and triage variables at the index 
visit (Table 2). “Other factors” included variables not �tting speci�c 
contexts. Each context appeared in all ten periods, except triage 

Table 1 
Cohort de�nition proceeding from all regional ED visits.

Inclusion or Exclusion Criteria Change 
(N)

Cohort Size 
(N)

ED visits registered upon arrival 7/1/ 2017–12/31/ 
2019

N/A 221,264

ED visits after exclusion of patients < 18 years −47,557 173,707
ED visits after exclusion of referrals from triage to 

other levels of care and exclusion of LWBS*
−16,583 157,124

ED visits after exclusion of visits with other complaints 
than dyspnea**

−146,255 10,869

*LWBS = patients who left without being seen by a doctor. **i.e., not assigned 
“dyspnea” according to the RETTS triage system.[32].
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variables at the index visit and socioeconomic factors, which were only 
in the �nal period. This created ten periods times eight contexts plus two 
additional contexts in the �nal period, resulting in 82 categories to 
which every word of a patient visit was assigned. This design re@ects the 
hierarchical and contextual nature of clinical data, enabling the model to 
assess not only which clinical events are important but also when and where 
they occur.

We previously developed the multivariate prediction model Clinical 
Attention-Based Recurrent Encoder Network (CareNet) [34], a Hierarchical 
Attention Network (HAN) inspired by Natural Language Processing 
(NLP) [37]. CareNet has three hierarchical layers: from bottom to top 
event, context, and time period. This hierarchical structure mirrors a 
clinician’s consideration of time and context in evaluating clinical 
events. Each layer includes an encoder and an attention block. The 
encoder, using bidirectional gated recurrent units (GRUs) [38], in
tegrates neighborhood information and converts inputs into numerical 
embeddings via pretrained skip-gram initialization [39]. The attention 
block learns, weighs, and aggregates input embeddings to form higher- 
level representations.

Thus, the event, context, and time period attention blocks calculate 
the importance of their respective embeddings. The �nal patient visit 
embedding passes through a feed-forward neural network, generating 
diagnosis label distributions, and evidential loss is calculated using la
bels. CareNet is trained end-to-end by minimizing evidential loss via 
backpropagation.

Missing data were handled using “N/A” markers, allowing the model 
to autonomously deduce missing values as part of its training and to 
identify existing values for the speci�c patient visit. Words with equal or 
less importance than “N/A” within the same time period and context 

Table 2 
Included variables in the model’s ten contexts. In total, there were 11,656 
words, i.e. categorized variables, some appearing in multiple contexts.

Context 
No.

Context Name Data Number 
of words

1 Primary care 
(included in all time 
periods)

Complaints 
Urgent/planned? 
Type of encounter (e.g., 
physical or digital) 
Care-provider category 
Procedures 
Primary and secondary 
diagnoses 
Referrals

1,665

2 Outpatient specialist care 
(included in all time 
periods)

Complaints 
Urgent/planned? 
Type of encounter (e.g., 
physical or digital) 
Organization/clinic 
Care-provider category 
Procedures 
Primary and secondary 
diagnoses 
Referrals

2,766

3 Emergency department 
care 
(included in all time 
periods)

Which hospital 
Ambulance/walk-in 
Complaints 
Triage priority 
Care provider category 
Medications 
Procedures 
Primary and secondary 
diagnoses 
Hospital admittance or 
discharge 
Referrals

1,217

4 Inpatient care 
(included in all time 
periods)

Admitted from 
Urgent/planned? 
Organization/ward 
Medications 
Procedures 
Primary and secondary 
diagnoses 
Discharged to 
Referrals

2,186

5 Ambulatory care 
(included in all time 
periods)

Ambulance priority 
Medications 
Oxygen delivery 
Free airway? 
Semi-sitting position? 
Continuous positive airway 
pressure (CPAP)? 
Advance notice to ED? 
Pain 
Time: acknowledgement of 
assignment, arrival to and 
departure from pickup 
place, completion of 
assignment

32

6 Other factors 
(included in all time 
periods)

Smoking status 
Vital signs measured in 
medical history in primary 
care, outpatient specialist 
care, ambulatory care, ED 
care, in-hospital care, but 
not in index ED visit: 
− Level of consciousness 
− Systolic and diastolic 
blood pressure 
− Pulse 
− Temperature 
− Oxygen saturation 
− Breathing frequency 
Ordinary medications, 
prescribed 
Ordinary medications, 
picked-up* 

681

Table 2 (continued )
Context 
No. 

Context Name Data Number 
of words

Number of picked-up 
medication packages* 
Distribution of medication 
to patient* 
Blood samples and other 
laboratory tests 
Radiology exams, type of

7 Human-derived factors 
(included in all time 
periods)

Age 
Sex

18

8 Electrocardiograms 
(ECGs) 
(included in all time 
periods)

Presence or absence of 125 
ECG features**

317

9 Socioeconomic factors 
(included only in the last 
time period)

Comparison of 216 
socioeconomic 
variables***

2,694

10 Triage variables at index 
visit (included only in the 
last time period)

Time at ED registration 
(hour, day, week) 
Which hospital 
Ambulance/walk-in 
Number of concurrent 
ambulance assignments 
ED occupancy 
Triage priority 
Vital signs at index visit: 
− Level of consciousness 
− Systolic and diastolic 
blood pressure 
− Pulse 
− Temperature 
− Oxygen saturation 
− Breathing frequency

80

*Data source: The National Prescribed Drug Register by The Swedish National 
Board of Health and Welfare; ** Data source: The ECG equipment manufac
turer’s curve review algorithms [36]; *** Data source: The Longitudinal Inte
grated Database for Health Insurance and Labor Market Studies database by 
Statistics Sweden.
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were considered as noise and excluded in that speci�c period and clin
ical context. Thus, all patient visits received their own unique and in
dividual variable set selected from vast possible words based on their 
medical history.

Further details on CareNet design are in Text A.2 in Appendix.

2.5. Experiments and evaluation

For AUROC analyses, we performed 10-fold cross-validation and 10 
bootstrapped evaluations within each fold using 90 % of the evaluation 
set, yielding a 10x10 matrix of AUROC values reMecting both cross- 
validation and bootstrapping techniques. Median micro AUROC 
(2.5–97.5 percentile) was calculated on the evaluation fold, giving each 
patient visit the same importance. Our multilabel design allowed a 
probability between 0 and 1 for each diagnosis label, potentially 
exceeding 100 % in total.

2.6. Variable list and simpler model

A slight improvement in machine learning performance may not justify 
reduced transparency and increased real-time data needs in the noisy ED 
setting. Therefore, we aimed to develop a simpler, more feasible model for ED 
implementation.

To identify the top variables in the CareNet model, we leveraged its hi
erarchical structure, which integrates clinical events, context, and timing. For 
each patient, we calculated a score by multiplying event weights with corre
sponding context and time weights, re@ecting overall importance. This process 
was repeated in each fold of a 10-fold cross-validation, producing ten vari
able lists. The :nal rankings were determined by averaging these lists.

As a post-hoc analysis, four of the authors (ML and UE, consultant 
physicians in cardiology; ETH and AK, resident and consultant physi
cians in emergency medicine) selected medically relevant, understand
able, and feasible variables from the top 300 variables on the list, 
choosing those approved by at least three out of the four authors. We 
analyzed AUROC by including the top 100, 50, and 20 variables, 
respectively, with and without expert selection using a CatBoost model 
[40]. The CatBoost model might be considered simpler as it treats input 
variables as atomic and independent, disregarding the contextual and tem
poral dependencies learned by CareNet through its hierarchical attention- 
based approach. CatBoost AUROC was assessed in the same manner as 
CareNet AUROC, utilizing a 10x10 matrix described above, and reported 
as median micro AUROC (2.5–97.5 percentile). We report CatBoost results 
due to its built-in feature importance analysis, proven effectiveness, ease of 
use, and popularity among clinical researchers [41]. An analysis with other 
machine learning models is presented in the Appendix (see Table A.1).

Sensitivity and speci�city were de�ned as the maximum sensitivity 
with a speci�city above 75.0 % and its corresponding speci�city. 
Sensitivity and speci�city for each diagnosis label of the CareNet and 
CatBoost models were reported as medians (2.5–97.5 percentile) 
calculated using 10x10 matrices of AUROC values after cross-validation 
and bootstrapping techniques.

The analysis was performed using PyTorch [42] software.

2.7. Descriptive statistics

For descriptive statistics, percentages as well as median and inter
quartile range (IQR), SPSS [43] and MS Excel [44] software were used.

3. Results

3.1. Descriptive statistics

The study included 10,869 visits by 7,457 unique patients. AHF, 
eCOPD, and pneumonia were identi�ed in 15.1 %, 13.6 %, and 13.1 % of 
visits, respectively. A total of 97 patient visits (0.9 % of the cohort) had 
more than one label. The category labeled “other diagnoses” included 

pulmonary embolism (3.4 %) and atrial �brillation/Mutter (1.8 %) 
alongside symptom-related diagnoses and various, less prevalent, con
ditions (Table A.2 in Appendix). The cohortś median age was 75 years 
(IQR 61–83) (Table 3).

3.2. Diagnostic performance

CareNet achieved a performance of 87.8 % (86.4–89.3 %) in the 
overall cohort (Table 4). Performance was notably higher for younger 
patients and those with fewer of the three diagnoses in their medical 
history, while it was similar between male and female patients 
(Table A.3 in Appendix).

The median number of unique individual variables per ED visit, 
selected from a total of 11,656 words, was 187 (IQR 111–307). The 
individual word sets were compiled into an AI-generated list of 2,064 
words for the cohort. The highest-ranking variables included prior di
agnoses of COPD and heart failure, advanced age, and atrial �brillation 
as recorded on ECGs. Age, ECG �ndings, previous diagnoses, and 
medication usage were consistently prioritized by the model, whereas 
socioeconomic factors, vital signs, and sex were considered less inMu
ential (Table A.4 in Appendix).

Four medical experts collectively selected 117 variables from the top 
300 variables identi�ed by CareNet (Table A.4 in Appendix). Subse
quently, two lists were generated: the original CareNet list and a re�ned 
list from which non-selected variables were excluded. The top 100, 50, 
and 20 variables from both lists exhibited overlaps of 43, 34, and 16 
variables, respectively.

Evaluation of these variable sets using a simpli�ed CatBoost model 
indicated minimal variation in median micro AUROC when adjusting 
the number of variables or incorporating expert selection (Table 4). The 
:ve alternative machine learning models—Random Forest, XGBoost, Logistic 
Regression, LightGBM, and Extra Trees—showed comparable performance to 
the CatBoost model, though no formal statistical tests were conducted 
(Table A.1 in the Appendix).

Micro AUROC is shown for the CareNet model in Fig. 1 and for the 
CatBoost model, including 20 unselected variables, in Fig. 2. Across all 
models, eCOPD exhibited the highest performance and pneumonia the 
lowest.

3.3. Sensitivity and speci:city

CareNet demonstrated a median sensitivity, with speci�city set 
above 75.0 %, of 78.5 % (69.0–86.2 %) for AHF, 91.9 % (84.5–96.4 %) 
for eCOPD, 39.6 % (18.0–66.7 %) for pneumonia, and 67.8 % 
(58.9–73.1 %) for “other diagnoses” (Table 5). The CatBoost model 
using the top 20 AI-ranked CareNet variables displayed a median 
sensitivity of 76.4 % (67.6–84.8 %), 87.1 % (79.2–93.0 %), 32.8 % 
(20.9–44.5 %), and 64.8 % (49.2–70.5 %) for AHF, eCOPD, pneumonia, 
and “other diagnoses,” respectively (Table 5). Increasing the number of 
variables to 50 or 100 and incorporating medical expert selection only 
slightly improved sensitivity while maintaining speci�city above 75 % 
for all diagnoses, particularly noticeable in pneumonia.

4. Discussion

4.1. General discussion

In this cross-sectional population-wide study, we utilized AI to screen 
vast unselected data from a complete regional healthcare system. We 
identi�ed the most predictive variables for a simpli�ed model to di
agnose AHF, eCOPD, and pneumonia in dyspneic adults at ED triage. 
Our CareNet model achieved a micro AUROC of 87.8 % (86.4–89.3 %) 
after ED triage, before physician assessment, blood tests, or x-rays. It 
identi�ed unique variables for each patient, resulting in a list of 2,064 
diverse variables arranged by diagnostic relevance. The top 20 variables 
from this list were incorporated into a simpler model with an AUROC of 
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86.6 % (85.1–88.1 %). Adding medical expertise had no signi�cant 
impact.

CareNet selected unique variables for each patient, with a median of 
187 (IQR 111–307) per visit from 11,656 possible words. This selection 
process allowed the model to autonomously recognize missing values 

during training and exclude low-weighted variables as noise, with var
iable noise thresholds adapted to different contexts and time periods. 
Aggregating these patient-speci�c “�ngerprints” yielded 2,064 key 
variables, reMecting signi�cant variables across the cohort. Variables 
may carry higher weight due to critical importance to speci�c in
dividuals or broader relevance across patient groups. While the attention 
mechanism in our CareNet model offers a useful preliminary measure of 
feature importance for the model’s internal evaluation of its latent variables, 
it is important to recognize that it may not fully capture semantic signi:cance. 
As noted by others, [45,46] attention mechanisms do not always serve as 
de:nitive indicators of feature importance, necessitating cautious interpre
tation. However, they can provide valuable initial assessments, though they 
do not enable causal inference on these inputs [37,47]. CareNet effectively 
analyzes complex clinical relationships in real clinical scenarios, inte
grating data within the same context and timeframe, surpassing stan
dard feature selection methods.

CareNetś highest-ranked variables (Table A.4 in Appendix) seem 
medically quite reasonable: prior underlying, chronic conditions of 
COPD and heart failure, advanced age, and atrial �brillation recorded on 

Table 3 
Cohort characteristics of visits labeled AHF, eCOPD, pneumonia, and “other diagnoses”.

All Cohort, N (%) or 
median (IQR)

AHF, N (%) or 
median (IQR)

eCOPD, N (%) or 
median (IQR)

Pneumonia, N (%) or 
median (IQR)

Other Diagnoses, N (%) 
or median (IQR)

Visits, N (%)* 10,869 (100) 1,640 (15.1) 1,481 (13.6) 1,420 (13.1) 6,425 (59.1)
Unique patients, N 7,457 1,242 800 1,263 5,180
Age, median (IQR) 75.0 (61.0–83.0) 83.0 (76.0–89.0) 76.0 (69.0–82.0) 77.0 (66.0–85.3) 71.0 (51.0–81.0)
Sex, N (%) ​ ​ ​ ​ ​
Male 5,194 (47.8) 886 (54.0) 650 (43.9) 692 (48.7) 3,011 (46.9)
Female 5,675 (52.2) 754 (46.0) 831 (56.1) 728 (51.3) 3,414 (53.1)
Medical history ​ ​ ​ ​ ​
Charlson Comorbidity Index, median (IQR) 1.0 (0.0–2.0) 2.0 (0.0–3.0) 1.0 (1.0–2.0) 0.0 (0.0–2.0) 0.0 (0.0–2.0)
Heart failure diagnosis previous year**, N (%) 2,319 (21.3) 881 (53.7) 411 (27.8) 234 (16.5) 824 (12.8)
COPD diagnosis previous year**, N (%) 2,366 (21.8) 263 (16.0) 1,194 (80.6) 291 (20.5) 678 (10.6)
Pneumonia diagnosis previous month**, N (%) 437 (4.02) 35 (2.13) 48 (3.24) 153 (10.8) 205 (3.19)
No. of primary care encounters previous year***, 

median (IQR)
11 (4.00–21.0) 17 (9.00–29.0) 13 (6.00–24.0) 10 (4.00–19.0) 9 (3.00–19.0)

No. of outpatient specialist encounters previous 
year***, median (IQR)

3.0 (0.0–8.0) 4.0 (1.0–9.0) 3.0 (1.0–8.0) 2.0 (0.0–7.0) 2.0 (0.0–8.0)

No. of emergency department visits previous year, 
median (IQR)

1.0 (0.0–2.0) 1.0 (0.0–3.0) 2.0 (0.0–4.0) 1.0 (0.0–2.0) 1.0 (0.0–2.0)

No. of in-hospital visits last year, median (IQR) 1.0 (0.0–2.0) 1.0 (0.0–3.0) 1.0 (0.0–3.0) 1.0 (0.0–2.0) 0.0 (0.0–1.0)
Index visit ​ ​ ​ ​ ​
Hospital****, N (%) ​ ​ ​ ​ ​
Hospital 1 5,691 (52.4) 928 (56.6) 818 (55.2) 651 (45.8) 3,345 (52.1)
Hospital 2 5,151 (47.4) 711 (43.4) 661 (44.6) 764 (53.8) 3,060 (47.6)
Arrival time to emergency department, N (%) ​ ​ ​ ​ ​
Monday-Friday, 8:00 am-8:59 pm 6,578 (60.5) 1,093 (66.6) 828 (55.9) 833 (58.7) 3,897 (60.7)
Saturday-Sunday, 8:00 am-8:59 pm 2,050 (18.9) 309 (18.8) 282 (19.0) 292 (20.6) 1,183 (18.4)
Nighttime, 9:00 pm-7:59 am 2,241 (20.6) 238 (14.5) 371 (25.1) 295 (20.8) 1,345 (20.9)
Ambulance arrival, N (%) 5,269 (48.5) 905 (55.2) 1,028 (69.4) 841 (59.2) 2,547 (39.6)
Triage priority, N (%) ​ ​ ​ ​ ​
Priority 1 614 (5.65) 99 (6.04) 108 (7.29) 140 (9.86) 276 (4.30)
Priority 2 5,221 (48.0) 937 (57.1) 955 (64.5) 816 (57.5) 2,582 (40.2)
Priority 3 4,214 (38.8) 587 (35.8) 398 (26.9) 421 (29.6) 2,827 (44.0)
Priority 4 759 (6.98) 14 (0.854) 17 (1.15) 41 (2.89) 687 (10.7)
Priority 5 57 (0.524) 3 (0.183) 3 (0.203) 2 (0.141) 49 (0.763)
Socioeconomic factors ​ ​ ​ ​ ​
Civil status*****, N (%) ​ ​ ​ ​ ​
Unmarried 1,917 (17.6) 146 (8.90) 143 (9.66) 212 (14.9) 1,425 (22.2)
Married/registered partnership 4,633 (42.6) 686 (41.8) 581 (39.2) 622 (43.8) 2,781 (43.3)
Divorced 1,982 (18.2) 258 (15.7) 414 (28.0) 242 (17.0) 1,093 (17.0)
Widow/widower 2,251 (20.7) 546 (33.3) 338 (22.8) 337 (23.7) 1,055 (16.4)
Household disposable income per consumption unit 

(100 Swedish kronor/year)*****, median (IQR)
1,867 (1,519–2,625) 1,743 

(1,506–2,625)
1,740 (1,507–2,625) 1,796 (1,503–2,625) 1,981 (1,534–2,791)

Education******, N (%) ​ ​ ​ ​ ​
Primary school 4,084 (37.6) 800 (48.8) 643 (43.4) 557 (39.2) 2,125 (33.1)
Upper secondary school 4,521 (41.6) 576 (35.1) 630 (42.5) 571 (40.2) 2,786 (43.4)
Post-secondary education 2,019 (18.6) 245 (14.9) 185 (12.5) 262 (18.5) 1,339 (20.8)

Heart failure: ICD-10 code I11.0, I13.0, I13.2 or I50; Chronic obstructive pulmonary disease (COPD): ICD-10 code J44; Pneumonia: ICD-10 code J10.0, J11.0 or J12- 
J18; Other diagnoses: all other ICD-10 codes. * N = 97 (0.9 %) of the cohort has two labels; ** Registered anywhere in the regional health care system; *** Encounters 
included visits, digital meetings and phone calls; **** Missing value in all cohort: N = 27 (0.25 %); ***** Missing value in all cohort: N = 86 (0.79 %); ****** Missing 
value in all cohort: N = 245 (2.25 %).

Table 4 
Comparison of CatBoost diagnostic performance with 100, 50, and 20 variables 
from the top of the CareNet List with and without selection of plausible variables 
by medical experts.

Model Median Micro AUROC 
(%, 2.5–97.5 percentile)

CareNet, all data 87.8 (86.4–89.3)
CatBoost, 20 variables, unselected 86.6 (85.1–88.1)
CatBoost, 20 variables, selected by medical experts 86.7 (85.1–88.2)
CatBoost, 50 variables, unselected 87.0 (85.2–88.1)
CatBoost, 50 variables, selected by medical experts 87.2 (85.7–88.7)
CatBoost, 100 variables, unselected 87.4 (85.8–88.6)
CatBoost, 100 variables, selected by medical experts 88.7 (87.5–89.8)
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an ECG. In fact, 16 of the top 20 variables were clearly medically 
plausible according to the medical experts (Table A.4 in Appendix), 
supporting its validity.

Among 2,064 variables, prior diagnoses, medication, age, and ECGs 
ranked highest, while sex, vital signs, and socioeconomic factors ranked 
lower. Top ECG variables—atrial �brillation, ventricular-paced com
plexes, left ventricular hypertrophy, and bundle-branch block—are ex
pected, as atrial �brillation is the most common condition in the “other 
diagnoses” label (Table A.2, Appendix), and because patients with AHF, 

eCOPD, and pneumonia have altered likelihoods of most of these �nd
ings on their ECG [48–50]. The low ranking of socioeconomic factors, 
despite prior �ndings, [51–53] may reMect the cohort’s advanced age 
and multimorbidity, making factors like profession less relevant. Income 
differences were also negligible among diagnostic groups (Table 3). 
Diagnostic precision was lower in elderly patients and those with all 
three diagnoses in their history (Table A.3 in Appendix), consistent with 
routine care. [20].

To our knowledge, no clinical score or published study identi:es the most 
effective variables for classifying adult patients with dyspnea into four cate
gories simultaneously: AHF, eCOPD, pneumonia, and all other diagnoses. 
Few studies use machine learning to classify a single diagnosis against all 
others, which is a different approach. These studies also rely on a limited 
number of expert-selected variables, [24–27,30,31] free-text extractions, 
[24] and data that are not typically found in structured form in routine 
healthcare records, but have to be manually curated [25,26]. Meanwhile, 
other studies do not present any assessment of variable importance [30,31]. 
This hinders direct comparisons, as our study incorporates a comprehensive 
set of structured data but excludes free text. Additionally, different models 
analyzing the same dataset may assign vastly different importance to vari
ables [27].

We tested the top 100, 50, and 20 CareNet variables in a simpler 
CatBoost model. A simpler model, less variables, and medical expertise 
had little impact on micro AUROC (Table 4). This suggests a few strong 
predictors in this research question, ranked highest by CareNet, and 
validated by experts, drive performance. However, sensitivity, with a 
speci�city set above 75 %, altered in pneumonia (Table 5), likely 
because pneumonia does not necessarily presume an underlying chronic 
disease, and is therefore more elusive.

4.2. Strengths and limitations

This study’s strength is its basis in a complete regional population 
and an integrated healthcare system, including all emergency care. Data 
were analyzed without variable selection and with minimal manual 
modi�cation to reduce bias. Though, it does not adjust for biases from 
care consumption and clinical work procedures.

Another strength is the inclusion of both admitted and discharged 
patients, despite less reliable ED discharge diagnoses [54]. To address 
this, expert labels were assigned to over 1,000 reviewed visits [34]. Prior 
research showed no performance difference in diagnosing AHF, eCOPD, 
and pneumonia with or without expert labels [34].

Only structured data, not free text or images, were included, and 
continuous values were categorized, while ordinal values were treated 
as categorical, losing some information. Furthermore, our hierarchical 
data structure uses contextual embeddings, meaning the model interprets 
latent variables rather than isolated features. These variables incorporate 
context (e.g., location) and time, limiting the direct use of standard feature 
importance methods designed for independent variables.

4.3. Future implications

CareNet’s generic design allows application to any diagnosis. Adding 
unstructured data, like physician notes, should be feasible given its NLP 
properties. Future research needs to explore advanced interpretability 
methods for hierarchical and latent variables. Future studies should 
investigate more robust techniques to analyze the model’s black-box 
behavior, requiring interpretability methods specialized for hierarchical and 
latent variables.

Code availability statement
The code for this study is available on GitHub and can be accessed 

via: https://github.com/aaq109/Carenet_v2.
Declaration of generative AI and AI-assisted technologies in the 

writing process
During the preparation of this work, the authors used OpenAI’s 

ChatGPT4 for English language review. After using this service, the 

Fig. 1. CareNet Performance. CareNet micro AUROC using one year of data 
prior to index visit. An illustrative example from one of the validation folds with 
the highest micro AUROC. AHF = acute heart failure, eCOPD = exacerbation of 
chronic obstructive pulmonary disease.

Fig. 2. CatBoost Performance. CatBoost micro AUROC models using the top 20 
variables, not selected by medical experts. An illustrative example from one of 
the validation folds with the highest micro AUROC. AHF = acute heart failure, 
eCOPD = exacerbation of chronic obstructive pulmonary disease.
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Summary table
What was already known on the topic 

• Dyspnea, or breathing dif�culty, is a high-risk emergency depart
ment complaint, often misdiagnosed.

• AI has been used to predict individual diagnoses but usually relies on 
fewer expert-selected variables.

What this study added to our knowledge 

• We developed an AI tool for early emergency department diagnosis 
of acute heart failure, COPD exacerbation, and pneumonia.

• We screened 12,000 unselected, categorized variables from a com
plete healthcare system.

• A hierarchical attention model autonomously selected top predictive 
variables for each patient visit.

• Aggregating individual top variables enabled a simpler, high- 
accuracy model; medical expertise added little.
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Appendix 

Text A.1. Diagnostic Labels.
The study’s four diagnostic labels were de�ned in accordance with WHO diagnostic ICD-10 codes: [33] AHF was represented by I11.0, I13.0, I13.2, 

and I50; eCOPD by J44; and pneumonia by J10.0, J11.0, or J12-J18. “Other diagnoses” was de�ned by the remaining ICD-10 codes. The primary 
diagnosis listed in the hospital discharge summary labeled patients admitted to the hospital, whereas the main diagnosis at ED discharge labeled 
patients who were not admitted. More than one label was allowed, which applied to a few visits with two main diagnoses documented in their 
electronic health record (EHR).

Our study cohort was manually reviewed for diagnostic accuracy in a previously published study, [34] including 95 % of the present study’s 
cohort. The review identi�ed ED visits discharged to home from the ED with the non-speci�c diagnosis “R06.0 dyspnea” as high risk of misdiagnosis. 
An expert committee of emergency medicine physicians manually reviewed the diagnoses in these 1,070 visits with access to data up to 30 days after 
the ED visit. Diagnostic inaccuracy was 4.5 % in AHF, 6.6 % in eCOPD, and 1.9 % in pneumonia cases, which we considered acceptable. We saw no 

Table 5 
Sensitivity and speci�city for the CareNet model and six CatBoost models. Values reported are maximum sensitivity with a speci�city above 75.0% and its corre
sponding speci�city. The variables may be selected or unselected by the authors as medically feasible.

AHF eCOPD Pneumonia Other
CareNet Median sensitivity (%, 2.5–97.5 percentile) 78.5 (69.0–86.2) 91.9 (84.5–96.4) 39.6 (18.0–66.7) 67.8 (58.9–73.1)
​ Median speci�city (%, 2.5–97.5 percentile) 75.3 (75.0–76.0) 75.4 (75.0–76.2) 76.3 (75.1–81.9) 77.6 (75.1–82.9)
CatBoost ​ ​ ​ ​ ​
20 variables, unselected Median sensitivity (%, 2.5–97.5 percentile) 76.4 (67.6–84.8) 87.1 (79.2–93.0) 32.8 (20.9–44.5) 64.8 (49.2–70.5)
​ Median speci�city (%, 2.5–97.5 percentile) 75.3 (75.0–78.3) 80.9 (75.1–84.6) 76.7 (75.1–81.4) 75.7 (75.0–80.8)
20 variables, selected Median sensitivity (%, 2.5–97.5 percentile) 75.9 (65.7–83.3) 90.1 (82.6–94.1) 34.3 (24.3–44.6) 65.0 (56.9–70.9)
​ Median speci�city (%, 2.5–97.5 percentile) 75.3 (75.0–78.9) 77.5 (75.1–80.9) 75.5 (75.0–79.0) 75.5 (75.0–78.8)
50 variables, unselected Median sensitivity (%, 2.5–97.5 percentile) 76.1 (66.0–83.7) 90.6 (83.5–96.5) 35.0 (24.2–49.4) 64.3 (56.8–72.9)
​ Median speci�city (%, 2.5–97.5 percentile) 75.2 (75.0–76.8) 75.3 (75.0–77.4) 75.4 (75.0–78.5) 75.4 (75.0–77.8)
50 variables, selected Median sensitivity (%, 2.5–97.5 percentile) 75.9 (68.5–84.2) 92.7 (85.4–97.8) 36.9 (25.4–47.3) 65.1 (58.3–75.3)
​ Median speci�city (%, 2.5–97.5 percentile) 75.2 (75.0–76.1) 75.3 (75.0–78.4) 75.4 (75.0–77.8) 75.3 (75.0–76.5)
100 variables, unselected Median sensitivity (%, 2.5–97.5 percentile) 77.6 (68.0–87.0) 91.4 (84.0–96.7) 40.5 (27.2–52.5) 66.2 (59.5–72.5)
​ Median speci�city (%, 2.5–97.5 percentile) 75.2 (75.0–75.6) 75.2 (75.0–77.0) 75.3 (75.0–78.1) 75.2 (75.0–76.2)
100 variables, selected Median sensitivity (%, 2.5–97.5 percentile) 81.4 (71.7–89.2) 92.2 (84.8–97.3) 55.9 (44.6–67.2) 68.6 (61.4–78.1)
​ Median speci�city (%, 2.5–97.5 percentile) 75.1 (75.0–75.5) 75.2 (75.0–76.0) 75.2 (75.0–75.9) 75.2 (75.0–75.8)
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difference in model performance with and without expert labels in the previous study. [34] These expert labels are used throughout the present study.
Text A.2. Mathematical Background of the Clinical Attention-Based Recurrent Encoder Network (CareNet) Design.
The mathematical background was originally published in a previous paper by the same authors. [34].
1. Problem Setup
In an electronic health record, the journey of a patient’s care during a single visit involves gathering various details speci�c to the patient, reported 

at different times and from different clinical contexts across the healthcare system. For example, a diagnosis might be made during primary care, 
outpatient specialist care, ED visits, or during inpatient care. The aim was to compile all this clinical information along with its respective timeframes 
and contexts and then represent it numerically at what we call the index time. This index time is crucial for categorizing patients in the ED into 
different diagnosis labels. Table 2 provides a comprehensive list of the types of data derived from various clinical contexts.

To capture the patient’s health status at index time, we employed attention modules inspired by Natural Language Processing (NLP) [37]. Our 
approach involved breaking down the patient’s visit trajectory over the past year into ten equal time periods, akin to paragraphs. Within each period, 
we organized data from ten clinical contexts resembling sentences originating from �ve different healthcare settings: primary care, outpatient 
specialist care, emergency care, ambulance care, inpatient care, as well as additional contexts such as ECG data, human-derived factors, socioeco
nomic factors, triage data, and “other factors” not easily connected to any speci�c clinical context due to the healthcare organization or IT-system 
structure. Notably, socioeconomic factors and triage data were only included in the most recent time segment.

Each of these contexts consisted of clinical events akin to words documented within its speci�c clinical context and timeframe. Ultimately, the 
ordered sequence of these time periods comprised the patient’s health state or document for that visit.

2. Generating patient visit representation
In the context of NLP, we developed a three-layer hierarchical document (patient visit) embedding module consisting of word-level (clinical 

events), sentence-level (clinical contexts), and paragraph-level (time periods) embeddings and attention modules.
Let us consider a single patient visit p with M periods, where each period consists of K contexts (ten in our case) and each context consists of N 

clinical events. Vectors and matrices are represented in lowercase and uppercase bold respectively. p is the vector representation of patient visit p.tm is 
the vector representation of period m of patient visit p.smk is the vector representation of context k within period m of patient visit p.cmkn is the nth code 
vector from context k in period m of patient visit p. For simplicity, we ignore the suf�xes hereafter.

For word (or event) level embedding and attention, we �rst embed all the N clinical events from a care context s and period m of patient visit p into 
a vector space via a pretrained skip-gram initialization [38]. These event vectors c are then passed through bidirectional Gated Recurrent Units (GRUs) 
to obtain an intermediate representation hc for each event, such that it also incorporates the contextual information of other events in s. Since not 
every event contributes equally to the overall context representation, we apply Bahdanau attention using a single-layer NN with weights Wc and bias 
bc as follows to obtain event-level attention ac and context representation s: 

uc = tanh(Wchc + bc);ac =
exp(uT

c uć )

∑N
n=1exp(uTc uć ); s =

∑

N

n=1
achc 

where ucʹ is the event-level self-attention vector which is randomly initialized and jointly learned during training.
For context-level attention, we follow similar steps. We stack another bidirectional GRU and a single-layer attention NN to generate care context- 

level attention as and time period representation t as follows: 

us = tanh(Wshs + bs);as =
exp(uT

s uś )

∑K
k=1exp(uTs uś ); t =

∑

K

k=1
ashs 

where hs is the intermediate context representation (after passing s through a bidirectional GRU), usʹ is the context-level self-attention vector, and Ws 

and bs are context-level NN weights and bias respectively.
Next, for time period level attention, we repeat the process. We stack another bidirectional GRU and a single-layer attention NN to generate time- 

level attention at and patient visit representation p as follows: 

ut = tanh(Wtht + bt)
; at =

exp(uT
t utʹ)

∑M
m=1exp(uTt utʹ); p =

∑

M

m=1
atht 

where ht is the intermediate time period and context representation (after passing t through a bidirectional GRU), utʹ is the time period level self- 
attention vector, and Wt and bt are time-level NN weights and bias, respectively.

3. Loss computation and training
Given our patient visit representation p, we �nally map it to a 4-node output layer. We then calculate the multilabel evidential loss proposed in 

[55] using ground truth labels for training all the NN weights.
Hyperparameter tuning for Carenet was systematically conducted to evaluate the impact of various parameters on model performance. The 

embedding sizes were varied from 100 to 300 in increments of 50, drop out from 0.1 to 0.5 with increments of 0.1 and batch sizes of 32, 64, and 128 
were tested. A learning rate decay strategy was employed (using pytorch optimizer class), where the learning rate was progressively reduced with each 
training step. Additionally, slight modi�cations were made to code-level RNN, context-level RNN, and time period-level RNN architectures. The 
results, assessed through cross-validation, indicated that the default architecture (reasonable accepted ranges) is robust, as variations in neural 
network sizes and layers did not signi�cantly affect the performance metrics.

4. Experiments and evaluation
In each experiment, we employed 10-fold cross-validation with minimal hyperparameter tuning. Of note, we are aware of the potential minor 

impact stemming from the absence of a separate hold-out set, which could inMuence the reported results. Further validation through external datasets 
could enhance the robustness of our �ndings.

E.T. Heyman et al.                                                                                                                                                                                                                              International Journal of Medical Informatics 202 (2025) 105969 

8 



Table A1 
Analyses Using Alternative Models. Analysis using Random Forest, XGBoost, Logistic Regression, LightGBM, and Extra Trees on the top 20, top 50, and top 100 
variables, with and without expert selection.

Model Top 20 SelectedMean 
AUROC (SD) (%)

Top 20 UnselectedMean 
AUROC (SD) (%)

Top 50 SelectedMean 
AUROC (SD) (%)

Top 50 UnselectedMean 
AUROC (SD) (%)

Top 100 SelectedMean 
AUROC (SD) (%)

Top 100 UnselectedMean 
AUROC (SD) (%)

Random 
Forest

85 (1.0) 85 (1.1) 86 (0.9) 86 (1.0) 88 (0.8) 86 (1.0)

XGBoost 86 (1.0) 86 (1.1) 86 (0.9) 86 (1.0) 88 (0.9) 87 (0.8)
Logistic 

Regression
86 (0.9) 86 (0.9) 87 (0.8) 86 (0.9) 88 (0.7) 87 (0.8)

LightGBM 87 (0.9) 86 (1.0) 87 (0.9) 87 (1.0) 88 (0.8) 87 (0.8)
Extra Trees 83 (1.1) 84 (1.2) 83 (1.1) 83 (1.3) 87 (1.0) 83 (1.1)

Table A2 
Prevalence, based on the total study cohort of the �ve most common diagnosis codes 
within the “other diagnosis” label group.

ICD-10 Code and Name Prevalence (%)
1. R06 Abnormalities of breathing 10.9
2. R07 Pain in throat and chest 4.5
3. I26 Pulmonary embolism 3.4
4. J45 Asthma 2.5
5. I48 Atrial �brillation and Mutter 1.8

Table A3 
Comparison of CareNet’s diagnostic performance in different cohort 
subgroups.

CareNet Model and Cohort Subgroup Median Micro AUROC 
(%, 2.5–97.5 Percentile)

All cohort 87.8 (86.4–89.3)
Females 88.3 (86.4–90.3)
Males 87.7 (85.0–90.0)
0–2 diagnoses in medical history* 88.2 (86.8–89.7)
3 diagnoses in medical history* 68.2 (54.1–86.1)
Age ≤ 75 years 92.1 (90.3–94.1)
Age > 75 years 81.7 (78.5–84.6)

* Visits having none, one, two, or all three diagnoses of heart failure, chronic 
obstructive pulmonary disease (COPD), and pneumonia registered anywhere 
in the regional electronic healthcare system in the preceding 12 months.

Table A4 
Top 100 variables assembled by the CareNet Model Using Data Up to One Year Prior to Index Visit. In the right column, “selected” assigns that the 
variable was selected by the medical experts.

1 Chronic obstructive pulmonary disease (COPD), primary diagnosis Selected
2 Heart failure, primary diagnosis Selected
3 ECG: Atrial :brillation (unknown atrial activity) Selected
4 Chronic obstructive pulmonary disease (COPD), secondary diagnosis Selected
5 Age ≥ 95 years Selected
6 Age 90–94 years Selected
7 ECG: Ventricular-paced complexes, other complexes also detected ​
8 ECG: Left Ventricular Hypertrophy with secondary repolarization abnormality (multi-LVH criteria, repolarisation abnormality) Selected
9 Chronic obstructive pulmonary disease (COPD), primary care complaint Selected
10 ECG: Atrial :brillation (ventricular rate **-**, irregular ventricular activity) Selected
11 Atrioventricular and left bundle-branch block, secondary diagnosis Selected
12 Age 55–59 years Selected
13 Heart failure, secondary diagnosis Selected
14 Veterinary medication for cardiovascular system, collected medication ​
15 Cutaneous abscess, furuncle and carbuncle, secondary diagnosis ​
16 Age 85–89 years Selected
17 Diseases of vocal cords and larynx, not elsewhere classi:ed, secondary diagnosis ​
18 Medication against obstructive airways, collected medication Selected
19 Age 70–74 years Selected
20 ECG: Anterior Q waves, possibly due to LVH (Q > 30mS, V1 V2 & LVH) Selected
21 Age 75–79 years Selected
22 Age 80–84 years Selected
23 “Heart failure,” primary care and outpatient specialist care complaint Selected
24 “Amputation,” primary care and outpatient specialist care complaint Selected
25 Age 45–49 years Selected

(continued on next page)
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Table A4 (continued )
26 ECG: Abnormal T, consider ischemia, diffuse leads (T < -0.20 mV, ant/lat/inf) Selected
27 Hypertensive chronic kidney disease, secondary diagnosis ​
28 Atrial :brillation and @utter, secondary diagnosis Selected
29 Other gynecological, collected medication ​
30 Non-pressure chronic ulcer of lower limb, not elsewhere classi:ed, primary diagnosis ​
31 Age 65–69 years Selected
32 ECG: Repolarisation abnormality, severe global ischemia ((LM/3VD) STe aVR, STd & Tneg, ant/lat/in) ​
33 Age 50–54 years Selected
34 ECG: Atrial-sensed ventricular-paced complexes (other complexes also detected) ​
35 “Makula”, primary care and outpatient specialist care complaint ​
36 Antihypertensives, prescribed medication Selected
37 Retention of urine, secondary diagnosis ​
38 “Aid for personal needs”, primary care and outpatient specialist care complaint ​
39 In@uenza due to identi:ed seasonal in@uenza virus, secondary diagnosis Selected
40 Fracture of lower leg, including ankle, primary diagnosis ​
41 ECG: Repolarisation abnormality suggests ischemia, diffuse leads (ST-T neg, ant/lat/inf) Selected
42 Type 2 diabetes mellitus, primary diagnosis Selected
43 “Assessment”, primary care and outpatient specialist care complaint ​
44 ECG: Abnormal T, consider ischemia, lateral leads (T < -0.20 mV, I aVL V5 V6) Selected
45 Other peripheral vascular diseases, secondary diagnosis Selected
46 ECG: Intraventricular conduction delay, consider atypical LBBB (QRSd> **, notch/slur R I aVL V5-6) ​
47 ECG: Sinus or ectopic atrial rhythm (P axis (−45,135)) ​
48 ECG: Left bundle-branch block (QRSd> **, broad/notched R) Selected
49 Lab: Digoxin within normal range Selected
50 Age 60–64 years Selected
51 Antigout preparations, collected medication ​
52 Mental and behavioral disorders due to use of opioids, primary diagnosis ​
53 ECG: Atrial-paced complexes (other complexes also detected) ​
54 ECG: Repolarisation abnormality suggests ischemia, lateral leads (ST dep, T neg, I aVL V5 V6) Selected
55 Fracture of forearm, primary diagnosis ​
56 Diabetes, chiropody, primary care and outpatient specialist care complaint* Selected
57 Neoplasm of uncertain behavior of urinary organs, primary diagnosis ​
58 Gastric ulcer, primary diagnosis ​
59 Other anemia, secondary diagnosis ​
60 “Patient with ICD” (implantable cardioverter-de:brillator), primary care and outpatient specialist care complaint Selected
61 Antigout preparations, prescribed medication ​
62 ECG: Paired ventricular premature complexes (sequence of 2 V complexes) Selected
63 “Prothrombin time” (PT), primary care and outpatient specialist care complaint ​
64 “Chiropody”, primary care and outpatient specialist care complaint ​
65 ECG: Anterior ST elevation, probably due to LVH (ST > 0.20 mV in V1-V4 & LVH) Selected
66 Rheumatic tricuspid valve diseases, secondary diagnosis ​
67 Other gynecological, prescribed medication ​
68 Complications of internal orthopedic prosthetic devices, implants and grafts, secondary diagnosis ​
69 “Care planning”, primary care and outpatient specialist care complaint ​
70 Other and unspeci:ed dorsopathies, not elsewhere classi:ed, secondary diagnosis ​
71 Osteoarthritis of hip, primary diagnosis ​
72 Nonrheumatic mitral valve disorders, secondary diagnosis Selected
73 “Nose bleeding”, ED complaint ​
74 ECG: Nonspeci:c T abnormalities, lateral leads (T < -0.10 mV, I aVL V5 V6) ​
75 Erysipelas, primary diagnosis ​
76 Cytology, primary care and outpatient specialist care complaint* ​
77 ECG: Ventricular bigeminy (bigeminy string > 4 w/ V complexes) Selected
78 ECG: Nonspeci:c repolarisation abnormality, diffuse leads (ST dep, T @at/neg, ant/lat/inf) ​
79 Problems related to lifestyle, secondary diagnosis Selected
80 Lab: Creatinine above normal range Selected
81 Measurement of blood pressure in toe or :nger ​
82 Other diseases of the digestive system, primary diagnosis ​
83 Dislocation and sprain of joints and ligaments at ankle, foot and toe level, primary diagnosis ​
84 “Check-up“, primary care and outpatient specialist care complaint ​
85 ECG: No further rhythm analysis attempted due to paced rhythm ​
86 Symptoms and signs concerning food and @uid intake, secondary diagnosis ​
87 Atopic dermatitis, primary diagnosis ​
88 Right side ​
89 ECG: Minimal ST depression, lateral leads (ST < -0.04 mV, I aVL V5 V6) Selected
90 Radiology: X-ray of elbow ​
91 Emphysema, secondary diagnosis ​
92 Paralytic ileus and intestinal obstruction without hernia, primary diagnosis ​
93 ECG: Repolarization abnormality, probably rate related (ST depression, T-negativity, tachycardia) Selected
94 ECG: Anterior infarct, old (Q > 30mS, abnormal ST-T, V2-V5) Selected
95 “Wound”, primary care and outpatient specialist care complaint ​
96 Lab: Prothrombin time (PT) above normal range ​
97 Bacterial pneumonia, not elsewhere classi:ed, secondary diagnosis Selected
98 ECG: Ventricular premature complex (V complex w/ short R-R interval) Selected
99 Triage: Oxygen saturation 80–85 % (regardless of oxygen gas treatment) Selected
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